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Summary and concluding remarks 

Three  genera l  types of  i n t e rmo lecu l a r  a p p r o a c h  are 
d i s t ingu i shed  for d imers  of  these flat a roma t i c  
molecules :  c o p l a n a r  with op t iona l  s l id ing mo t ion ,  
edge- to -p lane  and  edge-to-edge.  The presence  o f  net  
a tomic  charges  has a s t rong effect on bo th  d imer  and  
crystal  s tructures.  A c o p l a n a r  a p p r o a c h  al lows the 
shor tes t  d i s tance  be tween  mo lecu l a r  centers  and  is 
favored  by d i spers ion  a t t rac t ion  as the mo lecu l a r  area  
increases.  A s l id ing m o t i o n  will lower  the C o u l o m b i c  
energy o f  c o p l a n a r  molecules .  E d g e - p l a n e  or ien ta-  
t ions  are f avored  by e lec t ros ta t ic  in te rac t ion  be tween  
ad jacen t  molecu les  and  this o r i en ta t ion  p r e d o m i n a t e s  
in all three  d i rec t ions  in the benzene  crystal ,  where  
the molecu les  pack  in quasi-c.c.p,  fashion.  However ,  
n a p h t h a l e n e  and  a n t h r a c e n e  utilize e d g e - p l a n e  inter-  
ac t ion  p r imar i ly  on ly  wi th in  quasi-h.c .p,  layers.  In 
these two structures ,  abou t  80% of  the i n t e rmo lecu l a r  
energy or ig ina tes  wi th in  layers and  only  abou t  20% 
be tween  layers.  
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Abstract 

For  m o l e c u l a r  crystals,  a p rocedure  is p r o p o s e d  for 
in te rpre t ing  expe r imen ta l l y  de t e rmined  a tomic  mean  

0108-7673/93/010010-13506.00 

square  an i so t rop i c  d i sp l acemen t  pa ramete r s  (ADPs)  
in terms of  the overal l  mo lecu l a r  v ib ra t ion  toge the r  
with in te rna l  v ib ra t ions  with the a s sumpt ion  tha t  the 
molecu le  consists  o f  a set o f  l inked rigid segments .  

© 1993 International Union of Crystallography 
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The internal l ibrations (molecular  torsional or bend- 
ing modes) are described using the variable internal 
coordinates of  the segmented body. In paper  I of  this 
two-part report, it is assumed as a zero-order approxi-  
mation that the internal vibrations about the l inkage 
axes between pairs of  segments are uncorrelated with 
each other and with the overall molecular  r igid-body 
vibrations. As a first-order approximat ion,  the possi- 
bility that each internal vibration can be correlated 
with the external vibrations is also considered.  An 
important  feature of this approach  is that the internal  
l ibrations are required to give zero contr ibut ion to 
the overall m o m e n t u m  of  the molecule at all times, 
so the internal  coordinates must be orthogonai to the 
external ones. Also, each of the internal l ibrat ions 
involves the motion of all atoms in the molecule.  The 
resulting internal  vibrat ional  parameters are invariant  
to the choice of reference segment. With this pro- 
cedure, the exper imenta l  ADPs obtained from crys- 
tal structure determinat ions  involving six small  
molecules (sym-trinitrobenzene, adenosine,  tetra- 
cyanoqu inod imethane ,  benzamide ,  a -cyanoace t ic  
acid hydrazide  and N-acetyl-L-tryptophan methyl- 
amide)  have been analyzed.  As a consequence,  vibra- 
tional corrections to the bond lengths and angles of 
the molecule are calculated as well as the frequencies 
and force constants (with e.s.d.'s) for each internal 
torsional or bending  vibration. Compared  with other 
models  used for describing internal vibrations,  there 
are differences in how the total ADP is part i t ioned 
between the internal and overall molecular  vibrations.  

I. Introduction 

The informat ion  concerning molecular  dynamica l  
behavior  that is obtained from a crystal structure 
determinat ion is extensive but incomplete.  The Bragg 
intensities can be used to determine the six 
anisotropic d isp lacement  parameters  (ADPs) for each 
atom and from these the mean  square (m.s.) ampli-  
tudes of atomic d isp lacement  can be obtained.  
However, because of the space and time averaging 
that is inherent  in the diffraction experiment ,  we 
cannot determine directly how the vibrat ion of  one 
atom is correlated with the vibrations of  the others 
in the crystal. It is necessary to postulate a model  for 
the correlated motions of atoms in crystals and then 
to test the model ,  for example ,  by compar ing  calcu- 
lated ADPs with observed values. 

The la t t ice-dynamical  model  of  Born and von Kar- 
man (described by Willis & Pryor, 1975) provides the 
most general ized approach.  Although computa-  
t ionally intensive, the model  has been used success- 
fully in studies of the crystal structure of  benzene 
(Fi l ippini  & Gramacciol i ,  1989) and other aromatic  
hydrocarbons.  Appl icat ion to other classes of  crystal 
structure depends  on the development  of an appropri-  

ate force field involving a set of  atomic charges and 
a tom-a tom potential  functions. 

For molecular  crystals, the r igid-body model  
(Cruickshank,  1956; Schomaker  & Trueblood,  1968) 
has been the most widely applied.  Here, it is assumed 
that the major  contr ibut ion to the observed ADPs are 
from lattice vibrations in which the molecule behaves 
rigidly. All internal vibrat ional  modes of the molecule 
are neglected. To use this model,  there are geometrical  
constraints on the molecule as pointed out by Johnson  
(1970a). Thus the atoms of  the rigid body must not 
all lie on a conic section such as a circle or two 
coplanar  straight lines. In general, the atomic ADPs 
can be fitted to the r igid-body model  by a l inear 
least-squares procedure to obtain values for all but 
one of the elements of  the molecular  t ranslat ional  
(T), l ibrat ional  (L) and cross (S) tensors (the trace 
of S usually being constrained to zero). The impor- 
tance of the L tensor is that it allows bond  lengths 
and angles to be corrected for molecular  l ibrations 
(Johnson,  1970a). These corrections are typically 
0.005 A and 0.2 ° and therefore may be very significant 
for accurately determined crystal structures. 

Some molecules are better treated by assuming that 
they consist of  a sequence of l inked rigid segments 
with the segments in relative motion (Johnson,  1970b; 
Dunitz & White,  1973). The internal modes of vibra- 
tion are usually torsional l ibrations about axes that 
are chemical  bonds  l inking the rigid segments. The 
riding approximat ion  (Busing & Levy, 1964) is 
assumed to govern the internal motion of a segment 
with respect to its neighbors.  Thus the internal motion 
of a given atom is the sum of m.s. d isplacements  
derived from each of the internal l ibrations that affect 
that atom. These segmented-body models  were first 
formulated so that the internal vibrations were uncor- 
related with the overall r igid-body motion. More 
recently, the model  has been modified so that such 
correlations can be taken into account (Dunitz,  
Schomaker  & Trueblood,  1988). However, a difficulty 
remains because,  if  the vibrational  correlation is in 
fact significant, the m.s. internal l ibration of segments 
about a fixed torsional axis cannot be separated from 
the component  of  the overall molecular  m.s. l ibration 
about the same axial direction.* With the revised 
model,  significant correlation of external and internal 
vibrations have been reported in a few crystal struc- 
tures, inc luding N-acetyl-L-tryptophan methy lamide  
(Souhassou et al., 1991). 

* This effect is not to be confused with the correlation of variables 
as defined by the correlation matrix obtained in a least-squares- 
fitting procedure. For biphenyl, there will be complete correlation 
in the least-squares model between the overall molecular libration 
about the molecular long axis (symmetrical) and the internal rela- 
tive libration of the phenyl groups about the same axis (antisym- 
metrical). However, no physical correlation of these two motions 
is required because they have different symmetry coordinates and 
distinct intrinsic frequencies of vibration. 
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He & Craven (1985) have proposed a segmented- 
body model in which the internal vibrations are 
treated as so-called quasinormal modes. These are 
similar to the normal modes of internal vibration of 
an isolated molecule except that high-frequency 
bond-stretching and bond-angle-bending vibrations 
are frozen and only torsional librations about selected 
chemical bonds are permitted. Thus, if there are n 
internal axes of torsional vibration, there will be n 
quasinormal modes, each constructed as a linear com- 
bination of the n permitted torsions. In this model, 
it is assumed that there is no correlation between the 
overall rigid-body motion and the quasinormal vibra- 
tions. However, each quasinormal mode involves the 
correlated motion of all atoms in the molecule. 

In its original formulation, the model was incon- 
venient to use in some respects. It was necessary to 
specify all the internal modes of the molecule, 
although most of them were subsequently frozen. 
Also, it was necessary to store and invert matrices of 
the approximate size (3N) 2, N being the number of 
atoms in the molecule. This imposes computational 
limits on the size of the molecule that can be treated. 
Therefore, we have developed an improved procedure 
that avoids these difficulties. A similar procedure has 
been described by Noguti & Go (1983) in connection 
with molecular dynamical studies of proteins. 

As before, on the basis of chemical intuition we 
must decide how the molecule is to be constituted as 
a sequence of rigid segments. We can then define 
variable internal coordinates to describe each of the 
internal vibrations of the molecule. We consider each 
variable internal coordinate to be either a bond tor- 
sional displacement or a bending of the molecule at 
a selected bond angle. The successive steps in the 
calculations are as follows. Firstly, we derive 
equations of motion for the molecule with respect to 
the moving frame of the global center. Secondly, 
following the procedure of Eckart (1935), we elimi- 
nate six variables, thereby effectively requiring that 
the overall linear and angular momenta due to inter- 
nal vibrations are zero. Thirdly, we recast these 
equations to set up the matrix that transforms the 
internal angular displacements into atomic linear 
displacements in a Cartesian coordinate system. 
Fourthly, we construct the inverse of the G matrix 
for the segmented-body system as would be used in 
a subsequent normal-mode analysis (Wilson, Decius 
& Cross, 1955). Details of the fourth and subsequent 
steps will be described in paper II of this report. At 
present, we are concerned only with the first three 
steps. These form the basis for our proposed new 
procedure in which the internal vibrations of the 
molecule about each internal axis are assumed to be 
uncorrelated with each other. Thus, the total ADP 
for each atom is the sum of m.s. amplitudes from the 
overall rigid-body motion and from the separate 
vibrations about each of the internal axes. As a sub- 

sequent modification of this procedure, we also con- 
sider the possible correlation of the external vibration 
with each of the internal vibrations of the molecule. 

Differences from the models of Johnson (1970b) 
and Dunitz & White (1973) are that, firstly, the inter- 
nal vibrations in the new approach do not involve 
riding motion and, secondly, the amplitudes of the 
internal vibrations are mass weighted and conform 
to the Eckart (1935) conditions concerning zero con- 
tribution to the overall linear and angular momentt~m 
from the internal vibrations, so that the internal coor- 
dinates are orthogonal to the external ones. Thirdly, 
in the vibration about each internal axis, all atoms 
in the molecule are in motion. 

2. Internal coordinates of segmented bodies 

We restrict ourselves to discussing only harmonic 
vibrations. Our aim here is to introduce a coordinate 
system that splits the kinetic energy of the segmented- 
body system into the sum of two parts, one describing 
the external vibrations and the other the internal 
vibrations. This is possible if we assume that the 
change of moment of inertia of the entire system 
owing to internal vibrations is negligible and that the 
Coriolis terms can be neglected. In addition, if we 
assume that the potential energy of the entire system 
can be partitioned in a similar way, then the Hamil- 
tonian of the entire system is split and orthogonality 
between internal and external coordinates cab be 
achieved. Under these conditions, which we consider 
as a zero-order approximation, an atom is considered 
to act as a point mass in the moving frame of the 
molecular center of mass as though it is in an inertial 
frame. The external vibrations of the molecule will 
be treated in terms of the well known rigid-body 
model (Schomaker & Trueblood, 1968) and will not 
be discussed further. In § 4, we consider a first-order 
approximation in which we retain the same coordi- 
nate system but allow correlation between the external 
and internal vibrations. 

Our first concern is to find a set of coordinates for 
describing the internal vibrations of the molecule. We 
assume that the molecule consists of N atoms 
grouped into N~ rigid segments interconnected by 
joints, each of which allows the relative angular 
vibration of the two adjacent segments (Fig. 1). We 
consider only the special case in which the inter- 
connections form a topographical tree. Thus, there 
will be a unique path or sequence of segments and 
joints in going from a given segment to any other 
segment. For a system with N, segments there must 
be Nj = N, - 1 joints. We number the segments and 
joints purely for ease of indexing and arbitrarily 
choose segment one, B~, as the reference segment. 
We can then define a pathway P, for the ith segment, 
B~, as the listing of the segments and )oints in going 
from Bi to the reference segment B,. If the number 
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of segments in a given pathway is k, the number of 
joints in the pathway must be k - 1. For the reference 
segment, the segment and joint numbers that specify 
the path are simply 1 and 0, respectively. 

In a moving Cartesian frame fixed on the molecular 
center of mass (global center), we use r`" (a = 
1 , 2 , 3 , . . . ,  N) to represent the position vector of 
atom a located in one of the segments. Because of 
the rigidity of the various segments, there are many 
geometric constraints on the set of r`'. Furthermore, 
as will be shown later, there are additional conditions 
governing the set of r`" that ensure that the internal 
vibrations do not change the overall momenta. It is 
convenient to deal with these restrictions by defining 
a set of internal coordinates to describe the internal 
vibrations. We allow two kinds of internal coordinates 
~0. If the internal vibration is a torsional twist of the 
molecule, then the variable internal coordinate is a 
bond-torsion angle A - B - C - D  where atoms A and 
D belong to different rigid segments and the twist is 
about the axis B-C. If the internal vibration is a 
molecular bending, the variable internal coordinate 
is a bond angle A - B - C  where atoms A and C belong 
to different rigid segments and the motion is about 
an axis through the bridging atom B and normal to 
the plane A-B-C.  Now we set out to find the coordi- 
nate transformation relating the infinitesimal linear 
atomic displacements dr`" (a = 1, 2, 3 , . . . ,  N) and 
the infinitesimal angular displacements dp~ ( a =  
1 , 2 , 3 , . . . ,  Nj).* 

* For ease of  description, we assume that only one variable 
internal coordinate occurs at each joint. Hence the number  of  these 
coordinates is Nj. For practical calculations using the computer  
program E K R T  (written by the authors),  this restriction does not 
apply. 

/ / o . _o/////// 

Z.... o 

B I ~ B4 

Fig. 1. Diagram representing a molecule with four rigid segments, 
Bl,  B2, B 3 and B4, and three flexible joints. Angular  displace- 
ments at the joints are d~o~, dtp 2 and dP3. Vectors are shown 
originating from the molecular  center of  mass (Og) and from 
the centers of  mass of  the segments (O,). A typical a tom ot is 
shown together with vectors defining the atomic position and 
internal rectilinear displacement.  

For any atom a fixed in segment Bi, the 
infinitesimal displacement dr`" from its equilibrium 

o position r`" due to internal motions can be expressed 
as  

o (r o_J,o) d~pa dr` '=  ~ na× 
a c  P, 

+ d l ~ ,  x (r ° - R~) + d R , ,  (1) 

where R ° is the position vector of the center of mass 
of the reference segment B~ with respect to the global 
origin; dR~ and dl'~ are the infinitesimal linear- and 
angular-displacement vectors, respectively, of the 
reference segment B~ with respect to the moving frame 

o of the molecule; na is a unit vector along the direction 
of the ath internal vibrational axis; jo is the equili- 
brium position vector of a point on the ath internal 
axis defined with respect to the global origin. 

On the right-hand side of (1) the first term rep- 
resents the displacement of atom a with respect to 
the center of mass of the reference segment B, due 
to a series of internal librations in the path Pi; the 
second and third terms represent the displacements 
of atom a due to the angular and linear movement 
of the reference segment with respect to the moving 
frame of the molecule. 

Equation (1) expresses dr`" in terms of a linear 
combination of the Nj variables d¢~ , . . . , dCNj  as 
required, except that there are six extra variables on 
the right-hand side, namely the components of dll~ 
and dRy. With the requirement that the dR,, satisfy 
the conditions specified by 

N 

~ m`'r° x dr`" -- 0, (2) 
i=i  `'( Bj 

N x 

~, ~ m,~ dr`" =0, (3) 
i~l  `'EBj 

these six extra variables are eliminated as indepen- 
dent variables. These are the conditions described by 
Eckart (1935) and discussed by Wilson, Decius & 
Cross (1955) in § 11-1. They are nearly but not exactly 
equivalent to the conditions requiring that the total 
angular and linear moments of the internal vibrations 
with respect to the moving frame of the global center 
should be zero. 

Replacing dr`" in (2) and (3) by the expression in 
(1) gives a system of equations that can be solved 
(see Appendix l) to obtain the six components of 
d l~  and dR, as given in 

Nj 
d l l ,  = ~ 0a dp,,, (4) 

a = l  

N~ 
dR, = ~ K,, d~p,,, (5) 

a = l  

where 0~ and ~:a are 3 × 1 matrices (vectors). 
For any atom a in segment B~, if we introduce the 

symbol 8.~ = 1 when a E P~ and 8.~ = 0 otherwise, then 
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if  we replace d l l ,  and dR~ in (1) by (4) and (5) we 
obtain the final result, 

Nj 

dro= E [ a o , n ° x ( r ° - J  °) 
a=! 

+O, x ( r ° - R ° ) + K ~ ]  d~a. (6) 

The system of  equat ions given in (6) can be cast 
in matrix notat ion as 

y = n ~ ,  (7) 

where A is the 3 N × Nj  matrix that t ransforms small  
angular  d isplacements  about  the Nj  internal l ibrat ion 
axes into the Cartesian l inear  d isplacements  for the 
N atoms. The elements of  the Nj  x 1 co lumn matrix 

are A~,, for a = 1, 2, 3 , . . . ,  Nj and the elements  of  
the 3 N x l  co lumn matrix y can be written as 
Arx~,Ary,~,Arz~ for a = l ,  2, 3 , . . . ,  N. 

3. Calculation of mean square atomic displacements 

If a normal -mode  analysis  of  the segmented-body 
vibrations were to be carried out, it would be 
necessary at this point  to calculate the relative magni-  
tudes and signs for A~,, (a = 1, 2, 3 , . . . ,  Nj )  for each 
internal normal  mode,  that is, the polarization vector 
for each mode.  However,  we are presently concerned 
only with the s impler  model  in which the angular  
d isplacements  A~p~ are assumed to be independen t  
of  each other• Thus the diadics describing the mean  
square ampl i tudes  of these vibrations can be written 
as the diagonal  matrix 

[ ((A~)I ) 2 ) 0 • . .  0 ] 

((ID (IDT)= 0 ((A~)2) 2) ••. 0 

o o . . .  ((a,~N,) ~) 

(8) 

84.0* 
i \ ~  CH2 

NH [ . ' : ' ~  

%. 

0 I l~ 

Fig. 2. A molecule of a-cyanoacetohydrazide shown with atoms 
in their mean positions (connected by solid bonds) and with the 
molecule undergoing an internal C-C-C bending vibration with 
atomic displacements calculated from the matrix A. It should 
be noted that all atoms are moving during the vibration. The 
angular displacement is greatly exaggerated to display the pat- 
tern of atomic displacements. The molecule, which is approxi- 
mately planar except for the H atoms, is viewed normal to the 
best least-squares plane. 

The Cartesian atomic l inear displacements  associ- 
ated with the vibration about  the ath axis are deter- 
mined from the a th  column in A. Thus each column 
in A can be used to construct a diagram such as Fig. 
2, which shows all atoms in the a-cyanoaceto-  
hydrazide molecule d isplaced in a molecular  bending  
mode. Mean square ampl i tudes  of atomic displace- 
ments for l ibrat ion about the ath axis can also be 
obtained from products of  elements taken from the 
a th  column of  A. Thus for the third atom (a  = 3), the 
contr ibut ion to the atomic ADP in a Cartesian system 
is obtained as 

AUII ( Uxa,31~xa,3) 2 2 = = ( A 7 . . ( a e a ) )  
2 2 = A7.a((A¢.) ) 

. As. , ( (A¢,)  2) za U22 = ( Uv~,3 u,,..3) = 2 

A U3 3 ( 1.,lza•3 Uza,3) 2 2 = = Ag.~((Aea) ) 

AU,2 = (ux., 3uy.,3)= A7.~A8.~((Aea) 2) 

and so on. If there are two or more internal vibrations,  
their contr ibut ions to the ADP are summed• In a more 
general ized form, we can construct a diadic for any 
atom as 

A U ~ = (Ar~Arj~) = (ypyq) 
N, 

= E ApaAqa((z~pa)2), (9) 
a=l 

where i, j = 1,2, 3, p = 3 ( a - 1 ) + i and q = 3 (a  - 1 ) +j .  
As it is assumed that there is no correlation of 

motions between the internal and external motions,  
the total A D P  is additive• Hence, we modify the tensor 
expression (7) of  Schomaker  & Trueblood (1968) to 
include the internal vibrations as 

U~ = G~jklLkl-I- H~jkiSkl + Tq-F ApaAqa(( Atpa)2), (10) 

where p and q are as in (9) and the Einstein conven- 
tion for summat ion  is applied.  It can be seen that 
(10) is l inear  not only with respect to the components  
of  the tensors T, L and S, which describe the overall 
r igid-body vibrations,  but also with respect to the m.s. 
ampl i tudes  of  the internal angular  d isplacements  
((A~a)2)• Therefore,  using observational equat ions 
based on (10), these variables can be determined by 
a noniterative least-squares-fitting procedure. 

4. Inclusion of terms for the correlation of the internal 
and external vibrations 

In § 2, as a zero-order approximat ion,  we assumed 
complete separabil i ty of  the Hami l ton ian  and 
described a system in which the internal coordinates 
are orthogonal  to the external coordinates• How- 
ever, when there is significant coupling of internal 
and external modes,  this approximat ion  becomes 
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inadequate ,  a l though the orthogonali ty of  the coor- 
dinates is retained. As a first-order approximat ion ,  
we retain the same coordinate system and introduce 
terms to describe the vibrational  correlations between 
the internal and external modes. This is analogous to 
the modif icat ion of the procedure of Dunitz & White 
(1973) carried out by Dunitz,  Schomaker  & Trueblood 
(1988).* 

We introduce six new variables for each internal 
vibration, namely  (t~A~oa), (t~.A~0,,), (tzA~o~) and 
(AxA~,,), (A~A~0,,), (A~A~0,,), where t,,, Ax etc. are 
Cartesian components  of  the overall r igid-body trans- 
lation and i ibration with respect to the molecular  
inertial axes. As Dunitz,  Schomaker  & Trueblood 
(1988) have pointed out, for l ibration about an inter- 
nal axis we can determine only ((All+ Atpa)2), where 
A II is the component  of  the overall l ibrat ion with 
respect to the axis of  the internal l ibration. In the 
expansion 

((al l+ a~o.)2) = ((all)2) + ((a~oa)2) + 2(a llano.), 

the first term ((atl) 2) general ly can be est imated from 
the components  of  L and this gives rise to an estimate 
of the sum of  the second and third terms but not their 
individual  values. For calculat ions in the molecular  
inertial axial system, with the introduction of the six 
variables listed above, ( ( A ~ )  2) is no longer an 
independent  variable and is therefore omitted from 
the least-squares-fitting procedure. After least- 
squares estimates are obtained for (;t,,A~,), (&,A~oa), 
(azA~oa), we carry out a t ransformat ion to local Car- 
tesian axes in which one axis is coincident  with the 
axis of  ~, .  In this way we obtain ((Aqga)2)+2(AIIA~pa) 
as the component  of  the t ransformed correlation 
terms about the axis ~,,. By addi t ion of  ((All)2), we 
obtain ((Ail+A~0a)2). For the details of  calculat ing 
the ADPs when there are physical  correlations present 
between the external and internal vibrations,  see 
Appendix  2. For an example  in which these correla- 
tions are considered,  see § 6 ( f ) .  For the other 
examples  presented in § 6, when physical  correlation 
terms were introduced into the vibrational  analysis,  
the improved agreement between observed and calcu- 
lated ADPs was found to be insignificant in terms of 
the R-value-ratio test (Hamil ton,  1974). 

5. Bond-distance and bond-angle corrections, 
vibrational frequencies and force constants 

A crystal structure refinement determines the mean  
atomic posit ions averaged with respect to the thermal  
displacements  but, as pointed out by Busing & Levy 

* It should be pointed out that, in the treatment of Dunitz, 
Schomaker & Trueblood (1988), no attempt is made to ortho- 
gonalize the internal and the external coordinates. Therefore, the 
coupling terms in their approach are at least partly due to the 
nonorthogonality of the chosen coordinates. 

(1964), the interatomic distances calculated from 
these posit ions are foreshortened.  The valence angles 
thus calculated are also affected (Scheringer,  1978). 
Estimated corrections owing to thermal vibrations 
depend on the nature of  the correlations in the atomic 
displacements .  With the procedure that we propose, 
the correlation terms between all the atomic l inear 
d isplacements  can be calculated using a modif ied 
version of  (9). Thus 

Nj 
(Ar,,~Arj~)=(ypy,~)= ~ Ap,,Aqa((A~o,,)2), (11) 

a ~ l  

where i,j-- 1,2,3,  p = 3 ( a -  1 ) + / a n d  q = 3 ( f l -  1 )+ j ,  
the difference from (9) being that p and q can take 
any value from 1 to 3N. With the correlation terms 
derived from (1 l) ,  appropr ia te  corrections for bond 
distances and angles can be calculated as indicated 
by He & Craven (1985) and Scheringer (1978). 

Trueblood & Dunitz  (1983) have provided 
examples  of  the est imation of internal vibrat ional  
frequencies and force constants using the expressions 

((A~o,,)2)=(h/8rr2lv)coth(hv/2kT) (12) 

f =4rr2lv 2. (13) 

For torsional l ibrations of  an atomic group with small  
mass, such as a methyl  group, Trueblood & Dunitz 
(1983) make the approximat ion  that the rest of  the 
molecule effectively possesses an inertia of  infinity 
and is not involved in motion. The appropria te  
moment  of  inertia, I, is that of  the moving group only. 
However, this simplif icat ion does not apply  when 
there is a relative motion of molecular  segments that 
have comparab le  mass. Under  these circumstances,  
according to the model  we propose, I is the reduced 
moment  of  inertia involving the two parts of  the 
molecule on each side of  the particular internal axis 
of  vibration. 

6. Applications of the model 

A computer  program EKRT has been written and is 
available from the authors. In this program, observa- 
tional equat ions based on (10) are set up and a 
least-squares fit to the experimental  ADPs is carried 
out. The observat ional  equations have weights w = 
o--2(f_,rj) derived from the crystal structure refinement.  
Calculated results include the estimated components  
of  the molecular  vibrat ion tensors (Tii, Lo, So) and 
the m.s. ampl i tudes  of the internal d isplacements  
((A~o,)2). A listing of the elements of the A matrix is 
also provided. Alternatively, ((A¢~) 2) for each inter- 
nal vibration can be substituted by the six correlation 
variables as described in § 4. The calculat ions are 
with respect to Cartesian axes taken along the direc- 
tions of  the principal  moments  of  inertia of  the 
molecule and with respect to the molecular  center of  
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mass as origin. The x axis corresponds to the 
maximum moment of inertia or the normal to the 
mass-weighted best least-squares plane through the 
molecule. The z axis corresponds to the minimum 
moment of inertia or the mass-weighted best least- 
squares line through the molecule. In the following 
examples, the model is used to fit ADPs only for the 
nonhydrogen atoms of the molecule. Atoms bonded 
to an H atom are assigned a mass including that of 
the H atom. We made use of our auxilliary program 
U I N S  for analyzing the differences between observed 
and calculated ADPs. Principal values of these 
differences (positive or negative) and their directions 
are obtained with respect to Cartesian axes chosen 
appropriately for each atom. We can then evaluate 
and if necessary revise the assumed segmented body 
model. Another of our auxilliary programs, MSD,  
was used to test for nonrigidity of the bonds within 
segments taken to be r ig id  (Harel & Hirshfeld, 
1975). 

( a ) sym-Trinitrobenzene 

We have chosen this example because it was also 
used by Dunitz & White (1973) when they proposed 
their procedure for describing internal vibrations. The 
ADPs for sym-trinitrobenzene (Fig. 3) are derived 
from the room-temperature study of the 1:1 crystal 
complex with sym-triaminobenzene (lwasaki & Saito, 
1970). The X-ray intensities for the structure determi- 
nation were estimated by eye from Weissenberg 
photographs. In this molecule, the benzene ring was 
found to be planar. The nitro groups at C1, C3 and 
C5 make dihedral angles 9.9, 0.9 and 5.9 ° with respect 
to the plane of the benzene ring. 

With the assumption that the molecule vibrates as 
a rigid body, the observed ADPs were fitted with 
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Rw=0.161, GOF=3.57.* There was considerably 
improved agreement (Rw =0.097, G O F =  2.21) when 
the model included uncorrelated internal torsional 
librations about the three C-N bonds. The m.s. ampli- 
tudes of libration were 240(24), 138(20) and 
76 (25) deg 2 for C1-N1, C3-N2 and C5-N3, respec- 
tively. These values are close to those reported by 
Dunitz & White (1973), which were 14, 11 and 9 ° in 
root mean square amplitude or 196, 121 and 81 deg 2. 

In Fig. 3, we show the contributions to Uzl fo? all 
atoms due to the libration rl about the C1-NI axis. 
We find similar patterns of m.s. displacement for the 
other two internal librations (not shown in Fig. 3) 
and, since these motions are uncorrelated, the total 
internal displacements are obtained as the sum of all 
three. In Fig. 3, it can be seen that the displacements 
of atoms O1 and 02 are large compared with those 
of the other two nitro groups and those in the benzene 
ring are negligible. Such a pattern of displacements 
is consistent with the moment of inertia of the nitro 
group about the C-N axis being small compared with 
that of the rest of the molecule (37.1 vs 818.4 dal- 
ton/~2 for C1-N1). According to the Dunitz & White 
procedure, the internal displacements due to r] would 
be zero for all atoms except O1 and 02. Consequently, 
for sym-trinitrobenzene, our procedure and that of 
Dunitz & White (1973) give results in good agreement. 

Using (14) and (15), we obtain frequencies 52 (3), 
68 (5) and 93 (16)cm -I for the nitro groups at C1, 
C3 and C5, respectively, giving a weighted average 
of 57 cm -I. The corresponding force constants are 
11 (1), 19 (3) and 36 (12) with a weighted average of 
12 J mol-I deg -2. 

( b ) Adenosine 

The crystal structure of adenosine (Fig. 4) has been 
determined from neutron diffraction data collected 
at 123 K (Klooster, Ruble, Craven & McMullan, 
1991). Assuming a two-segment model with internal 
torsion r about the glycosidic bond N9-C 1', we obtain 
Rw=0.100 and GOF=2.32  and m.s. amplitude 
14.7 (19)deg 2 for r. Principal values for the overall 
molecular translation are 0.0107, 0.0086 and 
0.0069 ]k 2 and for the libration they are 0.4, 1.1 and 
4.7 deg 2. With the same two-segment model and using 
the procedure of Dunitz & White (1973), the agree- 
ment is very similar (R,.=0.102 and GOF=2.47) .  
However, the m.s. amplitude for r is smaller 
[5.1 (9)deg 2 assuming that the ribose group is the 
reference segment] and the m.s. amplitudes of the 
overall vibrations are slightly different (0.0115, 0.0085 
and 0.0071 A2 for the translations and -0.1, 0.8 and 

Fig. 3. M.s. out-of-plane displacements (AUIt, units A2x 10 -4 ) 
owing to the internal torsional iibration (r 2) = 240 deg: about 
the CI-N1 bond in sym-trinitrobenzene. The molecule is shown 
referred to Cartesian axes along the directions of the principal 
moments of inertia. 

* R,, : [ ( Z  wa2)/(Y, wU~t'~)] '/2 and G O F =  [(Z wAZ)/(rn - 
n)] wz, where the summation is over the independent components 
of the ADP and over the atoms in the mcrlecule. Also, w= 
0 --2 U'~ bs, A = _/l°bS, i _ __/]calij a n d  m - n is t h e  n u m b e r  o f  degrees o f  

freedom in the least-squares fit. 
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6.8deg 2 for the librations). Unlike the previous 
example (a),  the rigid segments in adenosine both 
have a considerable moment of inertia about the 
internal torsion axis (453.6 and 847.6 dalton A2 for 
adenine and ribose, respectively). 

In the case of adenosine, the two procedures give 
different results because they involve patterns of inter- 
nal atomic displacements that are different. The least- 
squares fitting to the observed ADPs gives very similar 
overall agreement but there are significant differences 
in how the calculated ADP is partitioned between 
the internal and external contributions. 

For the internal libration in adenosine, we obtain 
a frequency of 47 (3)cm -1 and a force constant 
76 (10) J mo1-1 deg -2. Further details of the analysis 
of ADPs for adenosine are given by Klooster et al. 
(1991). They also report an analysis of ADPs from 
the room-temperature study of Lai & Marsh (1972), 
which was based on X-ray diffraction data. At room 
temperature, the m.s. amplitude of the internal libra- 
tion increases to 36.1 deg 2. However, there are no 
significant changes in the frequency or the force 
constant. 

( c) 7,7,8,8-Tetracyanoquinodimethane ( T C N Q )  

The ADPs for the TCNQ molecule come from the 
crystal structure determination of the 1:1 complex 
with p-terphenyl using neutron diffraction data col- 
lected at room temperature (Lisensky, Johnson & 
Levy, 1976). The ADPs for TCNQ were analyzed 
assuming a segmented body and using the O R S B A  
computer program (Johnson, 1970b). The molecule 
(Fig. 5) lies on a crystallographic center of symmetry 
so that there is no correlation between overall rigid- 
body librational and translational motion and there- 
fore the components of the cross tensor S are all zero. 

If we assume that the entire molecule is rigid, after 
fitting the ADPs for non-H atoms we obtain Rw = 
0.114 and GOF=7.75 .  We then assumed model I in 

which the molecule consists of three rigid segments: 
the central ring; the pair of cyano groups together 
with the bridging atom C4; the equivalent centrosym- 
metrically related segment involving C4' [see Fig. 5(b) 
for the atomic nomenclature]. Model I gave a con- 
siderable improvement in the agreement (Rw = 0.030 
and GOF = 3.06) but was unacceptable. A negative 
m.s. amplitude was obtained for the principal value 
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Fig. 4. The molecule of adenosine in the conformation observed 
in the crystal structure. The internal torsional libration is about 
the CI ' -N9  bond, which links the ribose group (upper left) and 
the adenine group (lower fight). Circles of decreasing size rep- 
resent O, N, C and H atoms. 

Fig. 5. The molecule of tetracyanoquinodimethane (TCNQ),  
which lies on a crystallographic center of symmetry. Total m.s. 
amplitudes were determined from the ADPs by least-squares 
fitting of a segmented-body model. The atomic out-of-plane 
displacements shown here (AUnt, units /~2x 10 -4) involve only 
the contribution of the internal vibrations. (a) Out-of-plane 
atomic displacements due to torsional libration of  one of  the 
cyano groups (C5-N1, upper fight) about the C2-C4 bond as 
axis. (b) Sum of out-of-plane m.s. atomic displacements obtained 
if a five-segment model is assumed in which there are indepen- 
dent torsional iibrations of  the four cyano groups about axes 
C2-C4 (or C2'-C4'). The angular displacement (r  2) = 27 (7) deg 2 
has the same value for cyano groups unrelated by crystallo- 
graphic symmetry. The resultant displacement is thus the sum 
of four patterns, each as is shown in (a). (c) Sum of out-of-plane 
m.s. atomic displacements obtained assuming a three-segment 
model in which pairs of cyano groups are rigidly joined. One 
such segment is outlined by the dashed line. As in (a) and (b), 
the cyano groups are assumed to be librating about the axes 
C2-C4 or C2'-C4'. The pattern of  displacements is notably 
different from that shown in (b). 
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of  the overall l ibrat ion about  the molecular  long axis. 
Also, there was almost  a complete negative least- 
squares correlation between this overall l ibrat ion and 
the internal torsional vibrations about the axes C2-C4  
and C2' -C4 ' .  Al though a model  of  type I was not 
described by Lisensky et al. (1976), they would pre- 
sumably  have encountered similar  results. They con- 
sidered a model  (which we call II), in which each 
cyano group forms a rigid segment riding indepen-  
dently on C4 or C4'. They report a m.s. ampl i tude  of 
18.5 deg 2 for the overall l ibration about the z axis, 
an out-of-plane bending  of  12.0 and 6.5 deg 2 for the 
C5-N1 and C 6 - N 2  groups, respectively, and an in- 
plane motion of  11.8 and 10.0deg 2 for the same 
groups. We tested this model  with the difference that 
we neglected fitting the ADPs for the H atoms. We 
also tested a model  (III) that involved all the internal 
vibrations of  I I together with an in-plane bending  of  
angles C 1 - C 2 - C 3  and C1 ' -C2 ' -C3 ' .  Model III gave 
slightly better agreement  than II but was rejected 
because the addi t ional  bending  modes were not sig- 
nificant (1.4o-). Model  II gave Rw =0.024 and G O F =  
2.49. The largest least-squares correlation was -0.71 
between the overall t ranslat ion 7"22 and l ibrat ion L~.  
There is good agreement  with the value given by 
Lisensky et al. (1976) for the m.s. ampl i tude  of the 
overall l ibrat ion about the molecular  long axis. 
However, our estimates are slightly larger for the m.s. 
ampl i tudes  of the internal vibrations and slightly 
smaller  for the overall translations. 

In an effort to unders tand why model  I failed 
whereas I I did not, we compared the out-of-plane 
components  of  the internal motions. In Fig. 5(a) ,  we 
show the contr ibut ions to U~I for all atoms from the 
internal torsion ('rl) of  C 5 ' - N l '  about the axis C2 ' -C4 '  
that occurs in model  If. Al though not required by 
crystal symmetry,  the torsion ('r2) of  C6 ' -N2 '  about  
the axis C2'-C4' has the same m.s. ampl i tude  and 
thus gives the same pattern of displacements  except 
for a molecular  reflection operation. Since there are 
also torsional vibrations affecting the cyano groups 
C5-N1 and C6-N2  and all four torsions are assumed 
to be uncorrelated,  we must sum the four sets of  m.s. 
ampl i tudes  to obtain the total contr ibution to U~, of  
the internal out-of-plane displacements  (Fig. 5b). In 
Fig. 5(c), we show the corresponding result for sum- 
ming the two torsional modes that occur in model  I. 
In this case there are only two torsions because pairs 
of  cyano groups are in the same rigid segment. 
Because the pattern of  displacements  in Fig. 5(c) 
resembles that which would be obtained for the over- 
all r igid-molecule l ibrat ion about the z axis, we con- 
clude that this is the explanat ion for the strong least- 
squares correlations obta ined with model I. Al though 
it might be expected that the effect of  al lowing 
independent  motion of  all cyano groups would be 
small,  in fact the pattern of  out-of-plane displace- 
ments becomes quite different, as shown in Fig. 5(b). 

( d ) Benzamide 

The crystal structure of  benzamide  has recently 
been de termined from neutron diffraction data collec- 
ted at 15 and 123 K (Gao, Jeffrey, Ruble & McMul lan ,  
1991). Assuming the molecular  framework to be rigid, 
we obtain Rw = 0.060 and G O F  = 1.82 for the ADPs 
at 15 K. Several models for the internal l ibrat ion were 
tested, all involving torsion (r)  of  the amide  group 
with respect to the benzene ring (Fig. 6a).  As in the 
case of TCNQ,  there is a strong least-squares correla- 
tion (here -0 .93)  between -r and the overall l ibration 
about the molecular  long axis, L33. The best agree- 
ment (R,, =0.043 and G O F =  1.28) was obtained by 
introducing an addi t ional  in-plane bending of  the two 
segments (0 in Fig. 6a).  M.s. ampli tudes  for (r2) = 
26 (5) and (02) = 3.3 (10) deg 2 are significant in terms 
of their e.s.d.'s. For the internal vibrations ~" and 0, 
the frequencies are 79 (16) and 137 (41) cm -1, respec- 
tively. The overall l ibration about the molecular  long 
axis is small  [L33=0.8 (11)deg2]. With the same 
vibrat ional  model,  ADPs at 123 K give Rw =0.036 
and G O F  = 1.93 with ( ' r  2) = 25 (14), ( 0  2) = 1.2 (24) and 
L33 = 13 (3 )deg  2. As shown by the larger e.s.d.'s, at 
the higher temperature the least-squares fitting is less 
successful in separat ing the internal and external 
vibrations for benzamide.  

We have made  further calculations in s tudying the 
relat ionship between the internal and external libra- 
tions r and L33. As can be seen from Fig. 6, the 
pattern of out-of-plane displacements  owing to r are 
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Fig. 6. The molecule of benzamide showing C atoms as filled 
circles. (a) The molecule is assumed to consist of two rigid 
segments (the amide group and the benzene group) that are 
involved in torsion 7- about the C1-C7 bond and bending 0 of 
the C2-C1-C7 bond angle. (b) Out-of-plane m.s. atomic 
displacements (AU~, units Aax10-4) owing to the internal 
torsional libration 7-, which is found to have a m.s. angular 
displacement of 26 (5) deg 2 at 15 K. 
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similar to those expected for an overall libration about 
the same molecular axis. Therefore, we took tl  ~ 
values for the ~" vibration only, as obtained from the 
ADPs at 15 K (see Fig. 6b), and fitted them, assuming 
the complete molecular framework to be rigid. 
Retaining the original weighting scheme, we obtained 
an apparently significant libration L33 = 5.2 (4)deg 2. 
However, the agreement was poor (Rw =0.20 and 
G O F =  2.18). We also carried out a fit assuming the 
complete segmented-body model but using as 
observations the t l  ~-~l values from only the rigid-body ~ q  

motion. We then obtained (r2) = -1.1 (6) and L33 = 
1.0(1) deg 2 with Rw=0.006 and GOF=0.15 .  Thus 
the value of L33 is recovered without significant 
change, while the m.s. amplitude for r becomes mar- 
ginally negative. We conclude that, at 15 K with ADPs 
small and accurately determined, the segmented-body 
model reliably indicates the presence of the internal 
torsion. 

( e) a-Cyanoacetohydrazide 

The crystal structure of c~-cyanoacetohydrazide 
(Fig. 2) has been determined from neutron diffraction 
data collected at 15 K (Nanni, Ruble, Jeffrey & 
McMullan, 1986). Neglecting the H atoms and assum- 
ing the molecular frame to be vibrating as a rigid 
body, we obtained R,. = 0.046 and GOF = 2.37.* No 
segmented-body model could be found in which there 
was a significant out-of-plane internal vibration. The 
best fit (Rw=0.036 and G O F =  1.94) was obtained 
assuming a two-segment model having an in-plane 
bending vibration (0) with a m.s. displacement 
2.8 (8) deg 2. This is the bending mode that is shown 
in Fig. 2 with an exaggerated displacement. 

( f  ) N-Acetyl-L-tryptophan methylamide 

Souhassou et al. (1991) have determined the crystal 
structure of this peptide (Fig. 7) from X-ray diffrac- 
tion data collected at 103 K and they have also 
analyzed the ADPs using the procedure of Dunitz & 
White (1973) including the effects of coupling of the 
overall and internal vibrations (Dunitz, Schomaker 
& Trueblood, 1988). With the simple rigid-body 
model, Souhassou et al. (1991) calculated ADPs 
giving Rw = 0.21 and GOF = 4.20. With the inclusion 
of internal torsional librations about each of the three 
bonds at C3 (Fig. 7), there was no significant improve- 
ment in the agreement. However, when correlations 
were introduced between each internal torsion and 
the overall molecular vibrations, the agreement was 
significantly improved (R,. =0.12 and GOF=2.46) .  

In a parallel set of calculations with our procedure 
(assuming the zero-order and then the first-order 
approximation, §4), we obtained similar results. 

* There is a typographical error in Table 4 of Nanni et al. (1986).  
The value of U~2 for atom H5 should be -0.0006 A2. 

Including the correlation terms, the agreement was 
R~,=0.126 with GOF=2 .90 ,  but with somewhat 
different values for the vibrational parameters. We 
obtain principal values 7.5, 2.4, 1.3 deg 2 for the overall 
libration L, larger than the values 4.38, 3.70, 
-0.26 deg: reported by Souhassou et al., while our 
values for the correlation parameters are somewhat 
smaller. Thus, for ( (A ' r l )2 )+2(AI IATI )  w e  obtain 
l l.4deg-' compared with 25.8deg 2 reported by 
Souhassou et al. 

By trial and error we have obtained a model using 
our procedure that gives considerably improved 
agreement (Rw =0.086 and G O F =  2.00). The only 
difference from the model assumed by Souhassou et 
al. (1991) is the replacement of the internal torsion 
of the tryptophan about the C3-C6 axis by a bending 
(0) of the C6-C7-C10 bond angle (see Fig. 7). 
With this model, one of the principal values of the 
overall libration L becomes non-positive-definite 
( -0 .4  deg:), but not significantly so. It can be seen 
from Table 1 that each of the three internal modes 
of vibration is significantly coupled with the overall 
molecular vibrations, both translational and libra- 
tional. We find that, for some atoms, the correlation 
terms make large contributions to the calculated ADP 
(see Appendix 2). Thus, after transformation to the 

tr°h~ = 0.0211 ~2 molecular inertial axes, atom 02  has ,,, ~ 
i r ca~ = 0.0212 A2. The latter in good agreement with ,-,~l 

includes contributions of 0.0095 ~2 from the overall 
molecular vibrations, -0.0312 A 2 from (lvAT"2) and 
0.0527 A 2 from (AyA'/'2). The m.s. amplitudes of 
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Fig. 7. The molecular structure of N-acetyl-k-tryptophan methyl- 
amide determined by Souhassou et al. (1991) shown with respect 
to the molecular inertial axes with origin at the molecular center 
of mass. The projection is down I x, which is the normal to the 
mass-weighted best plane through the atoms of  the molecule. 
The vibrational analysis [§ 6 ( f ) ;  Table 1] assumes that there are 
four rigid segments consisting of C3-C6, the acetyl group at N1, 
the methylamide group at C4 and the tryptophan at C7. The 
internal vibrations consist of torsions r~ about C3-NI (making 
an angle 12 ° with Iv), r2 about C3-C4 (making an angle 32 ° with 
lz) and the bending 0 about the normal to the plane C6-C7-C10 
(making an angle 38 ° with I~). 
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Table 1. Molecu lar  v ibrat ional  analysis  f o r  N - a c e t y l - t -  
t ryptophan m e t h y l a m i d e  

The analysis is based on the anisot ropic  mean square ADPs repor- 
ted by Souhassou  et al. (1991) in their Table 3. Calculat ions are 
with respect to the molecular  principal  inertial axes with the origin 
at the molecular  center  o f  mass. The molecular  model  (Fig. 7) 
involves the overall  vibrations with tensors describing the transla- 
t ional (T) and librational (L) vibrations and their correlat ion (S) 
and three internal vibrations ( r , ,  r 2 and 0), each of  which is 
assumed to be corre la ted with the overall  t ranslat ional  and libra- 
t ional vibrations.  The variables are in units ,~2, deg2 or deg ~ .  

(a)  Overall  vibrations 

"0.0138(9) 0.0011(7) 0.0011(7) ] 
/ 

T= 0.0055 (8) 0.0036 (7) | 
l 

0.0057 (12) 3 

4.3(4) -1.0(4) 1.5(3)] 

L= -0.2(5) -0.3 (3) / 

7.8(6).] 

-0.035 (20) -0.032 (6) -0.010 (6) ] 

S= 0.048 (9) -0.11 (20) 0.024(10)] 
/ 

-0.172 (16) 0.004(16) 0.046 J 

(b) Correla t ions  of  the overall  and internal vibrations 

Here tx and A~ refer to the ampl i tude  of  overall t ranslat ion and 
libration about  the inertial axis I~ (and similarly for y and z) and 
A~0 refers to the ampl i tude  of  the appropr ia te  internal  vibrat ion 
( r  I , r 2 or 0). 

< txAu, ) < t, , ~  > < t=a¢ ) 
r t -0.27 (12) -0.72 (12) 0.59 (17) 
r 2 0.72 (12) -0.03 ( 11 ) 0.10 (7) 
0 -0.06 (5) 0.25 (4) 0.08 (2) 

<A,A¢) <A,A¢) (;t:A,p) 
r I 11(3) -11(3) -1(2)  
r 2 2 (2) 18 (2) 0 (2) 
0 1.2 (4) 4.4 (7) -2.8 (9) 

(c) M.s. l ibrational ampli tudes  about  the internal axes 

Here  A I is the ampl i tude  o f  the overall  molecular  l ibration L about  
a selected internal vibrational axis, ~. 

<(Aq~)2)+2(AIAq~> <(AI) 2) <(A'I+Aq~)2> 

r~ 23.2 0.1 23.3 
r 2 19.4 5.7 25.0 
0 4.2 3.7 7.9 

vibration about the three internal vibration axes 
(Table 1) are predominantly internal in nature only 
for ri. 

7. Discussion 

We find very similar agreement between observed and ' 
calculated ADPs for a given segmented molecular 
model irrespective of whether we use our procedure 
or other procedures in the calculations. In such com- 
parisons, we also find that the resultant vibrational 
corrections to molecular bond lengths and angles are 
very similar. The primary difference in the various 
procedures is found in the partitioning of the total 
ADP with respect to the contributions of the internal 
and overall vibrations. The aim in formulating our 

procedure was to set up a coordinate system in which 
the internal coordinates are orthogonal to the external 
coordinates. Under these circumstances, thc results 
are invariant to the choice of reference segment. When 
significant coupling occurs between internal and 
external vibrations, our zero-order approximation 
breaks down. Under the first-order approximation, if 
our assumption remains valid concerning the separa- 
bility of kinetic energy for the two kinds of motion, 
then the orthogonality of the coordinate system is 
preserved. However, interaction terms become impor- 
tant in the potential energy. 

It would be desirable to have an objective test for 
evaluating how well different procedures or molecular 
models describe the molecular vibrations. Such a test 
is difficult to devise because chemical intuition must 
always be invoked in setting up the molecular model. 
However, it is worth emphasizing that a necessary 
condition for ensuring the physical significance of a 
model is that the resulting m.s. amplitude matrix must 
be positive-definite. This is not a condition that is 
guaranteed by the least-squares fitting. In the case of 
a molecule with one internal vibration ~0, the m.s. 
amplitude matrix can be written as 

T S (tAq~) ] 
S r L <kA~p> ] ,  

(tA~) T (kdq~) T <Aq~ z) 

where the superscript T denotes the transpose. To 
evaluate the eigenvalues of this 7 × 7 matrix, all its 
elements must be determined. Unfortunately, with 
Bragg diffraction data, this is possible only under 
special circumstances when the molecule has crys- 
tallographic point symmetry of certain kinds, such as 
1 or m. Otherwise, [S] has one degree of indeter- 
minancy (Schomaker & Trueblood, 1968). In the case 
of TCNQ [see § 6(c), above], the molecule has site 
symmetry 1, so that [S]=0 .  With our procedure, 
assuming that the internal and external vibrations are 
uncorrelated, we have (tAq~)= (kAq~)= 0, so that [T] 
and [L] must each be positive-definite and each <Aq~ 2) 
must be positive. We found that model II satisfied 
these conditions but model I did not and therefore I 
was rejected. In the general case, although the m.s. 
amplitude matrix is not completely determined, it 
must be symmetric and thus a model giving one or 
more negative diagonal terms should be rejected. A 
model should be regarded with suspicion if an off- 
diagonal term is unusually large compared with the 
geometric mean of the two corresponding diagonal 
terms. 

The procedure that we have outlined for the analy- 
sis of internal molecular vibrations should be widely 
useful, but it is subject to certain limitations. Firstly, 
to deal with flexible cyclic molecules, it is necessary 
to introduce constraints on the internal vibrations 
that are associated with ring closure. These will be 
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described in part II of our report. Present applications 
of our procedure using program E K R T  are restricted 
to molecules that lack a cyclic configuration of seg- 
ments. 

Secondly, we have not allowed for bond stretching 
as an internal vibration because the m.s. amplitudes 
for most vibrations of this kind are likely to be smaller 
than the e.s.d.'s in the observed ADPs. There are 
important exceptions, such as the stretching of 
covalent bonds involving hydrogen. H-atom vibra- 
tions can be studied in detail for crystal structures 
that have been determined from neutron diffraction. 
Our procedure can be applied in such studies, but 
first the m.s. amplitude of stretching along the bond 
must be estimated, for example by making use of the 
non-rigid-bond test (Harel & Hirshfeld, 1975). It is 
a good approximation to attribute all the stretching 
motion to the light H atom and to subtract this m.s. 
amplitude from the hydrogen ADP. When this was 
done in the case of a-cyanoacetohydrazide at 15 K 
[see § 6(e), above], and when H atoms were included 
in the analysis, we obtained a fit with Rw = 0.059 and 
GOF = 3.12. However, this procedure is cumbersome 
and, to deal with the H atoms, the number of internal 
vibrations must increase considerably. We believe 
that the internal vibrations of H atoms can be esti- 
mated more conveniently and directly by subtracting 
from the hydrogen ADPs the contribution calculated 
from the motion of the molecular frame (Johnson, 
1970b). 

Thirdly, our procedure is not suitable for crystal 
structures in which molecular interactions are so 
strong that the rigid-body approximation becomes 
inappropriate. The crystal structure of N-acetyl-L- 
tryptophan methylamide [Souhassou et al., 1991; see 
also § 6 ( f ) ]  provides an example in which there 
appears to be a significant mixing of internal and 
external vibrations. In this case, the effect might be 
attributed to the irregular shape of the molecule (Fig. 
7), which requires an interlocking pattern for the 
molecular packing. The presence of a three- 
dimensional hydrogen-bonding network might be 
another important factor. Because these are quite 
common structural characteristics, it is to be expected 
that the mixing of internal and external vibrations is 
an effect that will be reported more frequently in 
future. Further studies are needed of crystal structures 
involving strong molecular interactions to explore the 
limitations of the existing procedures for analysis of 
ADPs. 
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APPENDIX 1 
Elimination of dl-l~ and dR, 

If one substitutes the expression for dr,. from (1) in 
(2) and (3), one obtains 

o (r o_Jo)  d~o Z mor°× "o× 
I 1 a i Q i 

+ ~ m . r ° xdD . , x ( r ' ~ -R  °) 
a ¢  B i  

o } + 2 rn~r~xdR~ = 0  (A1) 
a c .  B i 

and 

0 0 ms ~ n . x ( r ~ - J ° ) d ~ p a  
l 1 ot ~ a E  Pi 

+ f_. m. dD. ,x ( r ° -R l ° )+  ~. m~ dR, /=0 .  (A2) 
c t E  B i a~c B ,  ) 

It may be noted that 

Y. rn,.r(,}, x (dl~, x r ° ) =  l° 
a~_ B,  

and similarly 

2 m~ r ° x  n a x r a d C a  : l i  2 n . d ¢ . ,  
a c B ~  a i a ~ P ~  

N 

~'. m . r ,  ° = miR °, ~'. mi = M, 
aEB~ i : 1  

N 

Z m, R° = O, 
i=1  

where mi and I ° are the mass and the moment-of- 
inertia tensor of segment B~ with respect to the global 
origin; R ° is the equilibrium position vector of the 
center of mass for segment B~ with respect to the 
global origin; M is the total mass of the molecule. 
Thus (A1) and (A2) reduce to 

~' I ° ~ n °d~p,,+m,R ° 
1 ac. P, 

aE P~ 

and 

-{ ] [ o 1/ - m , R  °x  n °d~pa +m,  • jOxnad~pa 
i =  i a ~ a E  P~ 

- M  dl'l~ x R ° + M  dR~ =0.  (A4) 

These equations can be solved numerically using 
a digital computer for the six components of dll~ and 
dRy. Since these equations are linear with respect to 
d i l l ,  dR~ and the d~,  the solutions must take the 
form of (4) and (5). 
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A P P E N D I X  2 
Contribution to the A D P  from the correlation of the 

external and internal vibrations 

The equations given here are obtained by an extension 
of the procedure described by Johnson (1970a). If 
we write (Ax, Ay, Az) as the terms from the atomic 
displacement matrix A [(7)] corresponding to the 
displacements of atom a owing to the internal vibra- 
tion about the ath axis then, in the molecular inertial 
axial system, for atom a we have 

A Ull "2Ax 0 0 

AU22 0 2Ay 0 i-(txA~)- 1 

AU33 = 0 0 2Az //|(,,,a~o)/. (AS) 

AUI2 ay  a., 0 L(t A~,,,) j 
A UI3 A~ 0 A~ 

. A U2 3 ~ 0 Az Ay 

Similarly, if (x, y, z) are the positional coordinates 
(in A) of atom a with respect to the molecular center 
of mass as origin, we have 
- 

A Ull 0 2zA,, -2yA, ,  

A U2 2 - 2 z A y  0 2xAy 

A U33 2yA~ -2xA~ 0 

A UI 2 - zAx zAy xAx - yA:, 

A Ula yA~ zA: - xAx - y A z  

_ A U2 3 yAy - zAz - x A y  xAz 

× / (A6) 

/ (aza~o> j 
We introduce here a local Cartesian system 

(x', y', z') with its z' axis parallel to the internal libra- 
o tion axis n~. Then (A6) will take the form 

- 
a UI! 0 2zAx -2yAx  

A U2 2 -2zAy  0 2XAy 

A U33 2yA= -2xAz  0 

,4 UI 2 - zAx zAy xAx -- yAy 

A UI3 yA,, zA~ - xA,, - y A z  

. A U23. yAy - zAz - x A y  xAz 

"(hx,A~o) 

x [ B ]  ( l ~ y , a ~ a ) ,  (A7) 

( l~.z'A(4)a) 

where [B] is a 3 x 3 transformation matrix from local 

atomic axes (x', y', z') to the molecular inertial axes 
(x, y, z). As is pointed out by Dunitz, Schomaker & 
Trueblood (1988), ((A~,,) 2) and (A:,A~a) (or (AIlA~pa) 
in their notation) are inseparable. Only the sum 
((A~ a)2) + 2(Az,A~a ) can be determined. One 
approach is to omit (A:,A~,,) and to determine the 
apparent value of ((A~,~)2) together with the five corre- 
lation terms (txA~,,), ( /yA~a) ,  (tzA¢,,), (hx,ACa), 
(hv,A¢o). An alternate approach (used in program 
E K R T )  is to omit ((A~,,) 2) and to determine the six 
correlation terms given in (A5) and (A6). By using 
the inverse matrix [B] -~, the three librational terms 
can then be transformed to obtain (hx,ACa), (Ay,A~a) 
and an apparent value for (hz,Aq~). Whichever 
approach is used, it must be remembered that the 
apparent ((Aq~a) 2) or 2(hz,Aq~,,) is actually the sum 
((kCa)2) + 2(az,a¢~). 
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